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Franklin wavelet, an investigation of using orthonormal wavelets in parallel algo- 
rithms for numerical linear algebra, and a study of the Hartree-Fock equation by 
the use of wavelets. 

E. W. C. 

25[65-01, 65D07, 65Y25, 68U07] NURB curves and surfaces: from projective 
geometry to practical use, by Gerald E. Farin, A K Peters, Wellesley, MA, 1995, 
xii+229 pp., 241 cm, $39.95 
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First, many readers, such as this reviewer, need to be told that "NURB" means 
"nonuniform rational B-spline". NURBS are basic objects that are the building 
blocks for representing curves and surfaces. Such representations, in turn, are 
essential in computerized design, drafting, modeling, and so on. NURBS are suf- 
ficiently versatile to fit several distinct systems for computerized design. In the 
1950s, such systems grew up independently in different companies (mainly in the 
automobile and aircraft industries) and even in different branches of the same com- 
pany. NURBS eventually made it possible to avoid the chaos in this field that 
the industry was apparently facing. The author gives a little of this history in his 
preface. 

The book is intended as a textbook for a course in computer-aided-design at the 
beginning graduate level. Prerequisites are knowledge of linear algebra, calculus, 
and basic computer graphics. Since formal geometry is NOT a prerequisite, the 
author begins with a snappy account of projective geometry. I particularly like 
his definition of the projective plane, which requires just three simple sentences. 
By page 17 we have learned all about pencils, Pappus' theorem, duality, the affine 
plane, and various models of the projective plane. 

Chapter 2 is devoted to projective maps, affine maps, Moebius transformations, 
perspectivities and collineations. In Chapter 3, conics are introduced in a manner 
going back to Steiner. The four-tangent theorem and Pascal's theorem are proved. 
In Chapter 4, more concrete representations of conics are considered, in parametric 
form. Here we meet the Bernstein form of a conic and the de Casteljau algorithm 
for computing points on it. The notion of a control polygon is introduced in this 
context. Interpolating conics, blossoms, and polars make their entrance. In Chapter 
5, emphasis shifts from projective geometry to affine geometry, which is closer to 
the environment of most applications. Now the parametric form of a conic appears 
as a rational function containing "control points" and "weights". In Chapter 6, 
"conic splines" are introduced. These are curves made up piecewise from conics, 
with certain smoothness imposed at the junctions. Chapter 7, one of the longer 
chapters, discusses rational Bezier curves, which are basic to all piecewise rational 
curve strategies. We have a Bernstein representation, again with control points and 
weights, either of which can be manipulated to affect the shape of the curve. There 
is a projective form of the de Casteljau algorithm, due to the author (1983). Degree 
raising and reduction, reparametrization, blossoming, and hybrid Bezier curves are 
all treated. Rational cubics are the subject of Chapter 8. Rational cubic splines are 
treated from the projective viewpoint in Chapter 9, with second-order smoothness 
imposed by use of the osculants. Chapter 10 is devoted to the general NURBS. 
Thus, rational B-splines of arbitrary degree are permitted. The basic operation of 
knot insertion is described. 
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In the remaining chapters, attention shifts to surfaces. Rational Bezier patches 
play a central role. The bilinear and the bicubic cases are singled out. Surfaces of 
revolution and developable surfaces are considered specially. Triangular patches, 
quadric surfaces, and Gregory patches are topics considered in the later chapters. 
The fifteenth and last chapter gives some examples and a discussion of the IGES 
standards for NURBS. There is a good bibliography and a good index. Copious 
references to the literature are made throughout the book. 

All-in-all, this is a very appealing book that should have a stimulating effect on 
the teaching of this important subject. It can certainly be recommended for solo 
study because of the gentle expository style of the writing. 

E. W. C. 

26[65-06, 65D05, 65D07, 65D17]-Designing fair curves and surfaces, 
Nickolas S. Sapidis (Editor), Geometric Design Publications, SIAM, Philadel- 
phia, PA, 1994, . xii+318 pp., 251 cm, softcover, $61.50 

This volume, the seventh in a series of geometric design publications from SIAM, 
focuses on the problem of "visually appealing" line/surface construction. Its twelve 
chapters explore various ways of (i) defining "fairness" or "shape quality" mathe- 
matically, (ii) developing new curve and surface schemes that guarantee fairness, 
(iii) enabling a user to identify and remove local shape aberrations without global 
disturbance. 

A common thread is the use of differential geometry constructs to express fair- 
ness. Thus, we encounter arc length s, curvature s, radius of curvature p = 1/, 
and torsion r in the study of lines, principal curvatures k1, k2, mean curvature 
H = (k1 + k2)/2, and Gaussian curvature K = k1k2 in the study of surfaces. 
Typically, not these quantities alone, but also their arcwise derivatives (or divided 
differences), are the determinants of shape quality. In the volume's broadest-gauged 
chapter, Roulier and Rando list eight different fairness metrics for lines, of which the 
first, ,u = f [p272 + (p1)2]1/2 ds, is representative. They propose the minimization of 
, over a preselected family of design curves as an answer to (i) and (ii) above. Sur- 
faces are to be treated similarly, with at least five double-integral fairness metrics 
to choose from. 

Other chapters present comparable schemes. Moreton and Sequin construct 
interpolatory quintic spline curves that minimize the functional f 11JJ 112 ds, and 
biquintic surface patches wherein (loosely speaking) the total of such functionals 
over all lines of principal curvature is minimal. Eck and Jaspert work with point 
sets only. They interpolate data by a polygon, invoke difference geometry to obtain 
discrete curvature and torsion derivatives si, r,', ri, r, 'r at each inner vertex, and 
perturb these vertices iteratively, so as to minimize Zi[(sI')2 + (')2]. Feldman ob- 
tains discrete curvature in the same way for a planar polygon with vertices (Li, Xi), 
and takes the length , of the derived polygon (Li, si) as a fairness metric. His aim 
is to minimize ,u by perturbing the ordinates Xi between prescribed tolerance limits. 

Several authors prefer inequality constraints on s, s', . . . to the metric approach. 
Burchard et al. fit discrete points in the plane by a circular spline with curvature 
of uniform sign, monotone and log-convex as a function of s, between designated 
nodes. Ginnis et al. fit the same points by a polynomial spline of nonuniform de- 
gree. They allow small perturbation of the data, one point at a time, and local 


